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ABSTRACT

A MACSYMA program is presented which determines whether a given single nonlinear ODE or PDE
with (real) polynomial terms fulfills the necessary conditions for having the Painlev property. Together
with some mathematical background. we give a synopsis of the algorithm for the program, its scope adri
limitations. Various examples of typical output of the program are provided.
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THE PAINLEVE TEST FOR NONLINEAR ORDINARY
AND PARTIAL DIFFERENTIAL EQUATIONS

Willy Hereman and Sigurd Angenent 1

1 Introduction: Mathematical Background

Roughly speaking dynamical systems may be divided into two classes. In the
first class one finds those systems which exhibit chaotic behavior, i.e. the solu-
tions of such systems depend sensitively on the initial data. A consequence of
this chaotic behaviour is that such systems are usually not explicitely solvable
in terms of "elementary functions." The other class of systems contains those
equations which are algebraically completely integrable. Obviously, one wants to
characterize systems which do not lead to chaos.

At the Lurn of the century, Pain -v6 and his collaborators were able to iden-
tify all second order ODEs of the form f,. = K(z,f, fe), which are globally
integrable in terms of elementary functions by quadratures or by linearization.
The restrictions on the function K, which is rational in f, algebraic in f, and an-
alytic in z, arise from careful singularity analysis. Indeed, integrability requires
that the only movable singularities in the solution f(z) are poles. Singulari-
ties are movable if their location depends on the initial conditions. Hence, the
critical points (including logarithmic branch points and ebsential singularities)
ought to be fixed to have integrability and consequently to assure predictable
behavior of solutions for all initial conditions.

Definition: A simple equation or system is said to have the Painlev property
(PP) if its solution in the complex plane has no worse singularities than movable
poles.

In a broader, more modern context, including PDEs, integrability became
associated with the existence of a Lax representation which allows linearization
of the given equation(s). The solution may then be constructed by e.g. the
Inverse Scattering Transform.

A restricted class of completely integrable PDEs, admits solitary traveling
wave solutions (called solitons if they conserve their identity upon collision).
Completely integrable systems of ODEs admit a finite dimensional Hamiltonian
formulation and have a finite number of first integrals. Analogously, completely
integrable PDEs possess an infinite number of conserved quantities, infinitely
many symmetries, nontrivial prolongation structures and Kac-Moody algebras.

'This work is partially supported by AFOSR under Grant 85-NM-0263. We thank
Jonathan Len (Symbolics, Inc.) for writing the POWERS subroutine. The original co-
developer of the program, Dr. Eric Van den Buick, presently at the University of Leuven
(Belgium), is gratefully acknowledged for endless nights of debugging. Help from Dr. D.
Rand (University of Montreal) in further debugging of the program was very much appreci-
ated.
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In a first attempt to identify integrable PDEs, Ablowitz et al. [for refer-
ences: consult the books and review papers cited at the end] conjectured that
every ODE, obtained by an exact reduction of a PDE solvable by IST, possesses
the Painlevd property. This conjecture was based on the fact that well-known
integrable PDEs, such as the Korteweg-de Vries (KdV) equation, can be trans-
formed (by similarity transformations) into ODEs of Painlev6 type, in particular
into the so-called six Painlev6 transcendents. This is yet another indication that
integrability is closely related to the absence of movable critical points.

2 Algorithm

An algorithm, due to Weiss et al enables us to verify if the given ODE or PDE
satisfies the necessary criteria to have the Painlev6 property.

For the PDE case: The solution f, say in only two independent variables
(t, z), expressed as a Laurent series,

f =gc Ukgk (1)
k=0

should only have movable poles. In (1), uo(t,x) 5 0, or a negative integer,
and uk(t,z) are analytic functions in a neighborhood of the singular; ion-
characteristic manifold g(t, x) = 0, with gr(t, z) $ 0.

For the ODE case2 : z will be replaced by g + z 0 in (1); z 0 being the initial
value for x.

The Painlev6 test is carried out in three steps:

" Step 1: Determine the negative integer a and u0 from the leading order
"ansatz" f oc uog ' , by balancing the minimal power terms after substitu-
tion of this first term of (1) into the given equation

" Step 2: Calculate the non-negative t.. r powers r, called the reso-
nances, at which arbitrary functions u, ,-nt .r -he expansion. This is done
by requiring that u, is arbitrary after su, ution of f OC uoO + uo +r

into the equation, only retaining its most singular terms

" Step 3: Verify that the correct number of arbitrary functions ur indeed
exists by substituting a truncated expansion of the form (1), in which one
sums over k = 1,2, ..., rmaz, where rmaz represents the largest resonance,
into the given equation.

At non-resonance levels, determine uk unambiguously.

At resonance levels, u, should be arbitrary due to a vanishing coefficient of

gr+mn . One has to check whether or not this compatibility condition
2 For this case a MACSYMA package already existed [Ran)
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is satisfied. Here minpowg denotes the (negative) power in g of the most
singular terms in the equation.

An equation or system for which the above steps can be carried out consis-
tently, and for which the compatibility conditions at all resonances are satisfied,
is said to have the Painlev6 Property and is conjectured to be integrable.

The reader should be warned that the above algorithm does not detect the
existence of essential singularities. In other words, for an equation to be inte-
grable it is necessary but not yet sufficient that it passes the Painlev6 test.
There are integrable equations (see Ex. 2) that only have the Painlev6 property
after a suitable chance of variables.

Refinements of the Painlev4 property have been established, allowing for
rational power expansions of f, and hence including certain algebraic branch
points in addition to movable poles.

3 Scope and Limitations of the Program

3.1 Scope

" the program works for a single ODE or PDE

" the degree of nonlinearity in all the variables is unlimited

* the number of parameters in the equation is unlimited

" the number of independent variables is also unlimited3

* ODEs and PDEs may have explicitly given space (and/or time) dependent
coefficients of integer degree (see Ex. 4)

* PDEs may have arbitrary time and space dependent coefficients (see Ex.
4)

* coefficients may be complex, although the usefulness of the Painlev6 test
is then debatable

" a selected positive or negative rational value of a, or o = 0 can be supplied
by the user

* the time consuming calculation of the coefficients li. and the verification
of the compatibility conditions is made optional

" it is possible to substitute an expansion of the form (1) with a selected
number of terms, e.g. to carry on with the calculations beyond rmaz

3 The released version of the program works for at most four variables (t,z, y, z) but this
can be extended trivially
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* the output provides vital information, including error messages and warn-
ings, to remedy possible problems

3.2 Limitations

" systems of equations are presently excluded

" the test is restricted to the traditional Painlev6 test based on the expansion
(1), with at least rational a, hence general fractional expansions in g are
at present not possible

" transcendental terms in the equation are not allowed, but they can often
be removed by a suitable (exponential) transformation of the dependent
variable (see Ex. 2)

" arbitrary parameters in the powers of f and its derivatives are not allowed

" neither are arbitrary (unspecified) functions of f and its derivatives

" selective substitution of certain uk is presently not possible, i.e. u0 , ul,
etc. are explicitly determined whenever possible, and their expressions are
used in the calculation of the next uk

" apart from trivial cases, nonlinear equations for u0 are not solved; if they
occur the program carries on with the undetermined coefficient uo (see
Ex. 5)

" the program only checks whether or not the compatibility condition is
satisfied. It does not solve for arbitrary parameters (or functions) or for
uO and its derivatives, should these occur (see Exs. 3, 4 and 5)

" intermediate output is onl., possible by including extra print statements
in the source code of the program

" the expressions occuring in the output on the screen are not accessible for
further interactive caiculations without modification of the program

4



4 Spin-offs of the Painleve Analysis

The Painlev6 test, apart from it usefulness in testing the integrability of Hamil-
tonian systems, evolution and wave equations, has rather interesting connections
with standard techniques in the study of dynamical systems and soliton theory:

" Truncation of the Laurent series (1) at the constant level term leads to
auto-Bicklund transformations

" The resulting Painlev6-Biicklund equations, obtained by substitution of
the truncated expansion and equating to zero powers of g, can readily be
linearized to derive Lax pairs for various systems of ODEs and PDEs

" As a consequer.- for ODEs, it is possible to construct algebraic curves
and explicitly integrate the equations of motion

" For PDEs, Painlev6 analysis provides insight in the construction of single
and multi-soliton solutions and also rational solutions, via direct methods
(Hirota's formalism and its clones) (see Exs. 3 and 5)

" The Painlev4 property serves as in tool in identifying the infinite dimen-
sional symmetry algebras for PDEs, which in turn have the structure of
subalgebras of Kac-Moody-Virasoro algebras

5 Using the Program

The program carries out the Painlev6 test in batch mode without interaction
by the user. The user only has to type in the LHS of the equation (denoted by
eq) and possibly select some options.

" For ODEs: The use of dependent variable f and independent variable x
is mandatory. A typical term in the ODE reads fx[.](x), where within
the brackets the order of derivation is inserted. The function without.
derivatives may be denoted by f itself. The symbol eq denotes the LIIS
of the equation

" Ex.: To test the Fisher ODE, f, + af - f 2 + f = 0, one would enter

eq : fx[2() + a * f[z](x) + f * * 2 - f;

The program will then treat a as an arbitrary parameter.

" For PDEs: Analoguously, a typical term reads ftxyz[k, 1, m, nI(t, x, y, z),
where the integers k, 1, m, and n are the orders of derivation with respect
to the variables t, z, y, and z
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* Ex.: To test the KdV equation, f, + aff., = 0, one enters

eq : ftx[1,0](t,x) + a* f* ftx[0, 1](t,x) + ftz[0, 3](t,x);

Again, the program will treat a as an arbitrary parameter.

Th. program is available (on IBM floppy or Macintosh disk) for two slightly
different version of MACSYMA: Franz Lisp MACSYMA 309 and Common Lisp
MACSYMA 412. 'Free copies may be obtained at the above address. To get
the program by email, contact: HEREMAN@EUNICE.MRC.WISC.EDU (arpa
net).

The program has been successfully tested, with MACSYMA versions 309.3
and 412, on a VAX 2000 and a VAX 11/780, for more than 100 ODEs and
PDEs.

@Wi1ly Heremanand Eric Vanden Bulck: Nopartofthe program PAINLEVE
TEST may be reproduced or sold without written consent of the authors.

6 Examples

The selected examples reflect some of the capabilities of the program. In the five
examples, a, b and c are arbitrary parameters, and a(t) is an arbitrary function.
Many more examples, tested with this program, may be found in the cited books

[Lea, Ste].

Example 1: The Korteweg-de Vries Equation
For the ubiquitous KdV equation,

fi + ff. + bf.. = 0, (2)

the program provides the following output:

PAINLEVE ANALYSIS OF EQUATION, bf,, + ffr + ft = 0

SUBSTITUTE u0 gof a FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE (2 alfa - 1,alfa - 3]

* COEFFICIENT OF g2 alfa-I IS uo 2 alfa g.

" COEFFICIENT OF g'lfa-3 IS uo (alfa - 2) (alfa - 1) alfa b (g1 )3

FOR EXPONENTS (2 alfa - 1) AND (alfa - 3) OF g, DO
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WITH alf a = -2, POWER OF g is -5 - SOLVE FOR uo
TERM -2 uo g., (12 b (g,,) 2 + Uo) -L IS DOMINANT

.9
IN EQUATION.

WITH u0 = -12 b (94 2 - FIND RESONANCES

SUBSTITUTE uo glif a + u,. gral FOR f IN EQUATION

TERM b (g,,) (r - 6) (r - 4) (r + 1) U,. gr-5 IS DOMINANT
IN EQUATION.

THE 2 NON-NEGATIVE INTEGRAL ROOTS ARE Ir = 4, r =6)

WITH MAXIMUM RESONANCE = 6 - CHECK RESONANCES.
SUBSTITUTE POWER SERIES F6= gk 2 uk FOR f IN EQUATION.

WITH uo = -12 b (g.,)2

COEFFICIENT OF -L IS 6b(g,) 2(( 12b(g. )2). - 36bg.rgzz. + 5ulg.)

ul= 12bg.,

* COEFFICIENT OF ..~IS 24bgz (4bggrr. -3b(g..) 2+ U2(g.)
2 
+gg.)

U2 - 4bgrgzrz, - 3b(g,, )2 + gtg1,

* COEFFICIENT OF -L2 IS
.9

-12b(b(g )2g...,1, - 4bg , g , g, , , + 3b(g1, 1, )
3 - gtgzgz,1

-U3 (g1 , )l + gtx(g.)2)/gz

U-3 b(g. )21,1 1,1 - 4bg,gz1 gxrz + 3b(grz ) 3 _gigg1 g1 r + g11,(g1,Y'
U (g. )4

* COEFFICIENT OF .1 IS 0
g

U 4 IS ARBITRARY!

COMPATIBILITY CONDITION IS SATISFIED!

* COEI FICIENT OF 1 IS

-( 2gr4gxrzr- 9b 2(g,)3 gzr1 gxxxxx~1 - 17b 2(g,)
3g,1,1 g1,r1

+48b 2 (g.) 2 (gr.42 g,1 , z1 - 2bgt(gr )3g...., + 70b 2(g1,)
2g,2T(g,1,1 )2

-174b 2g,(g,1, )
3g , + l~g~ )2xgz - btgz3zr

+81b2(g,)5- 21bgtg 1 (gvz) 3 +2 lbgg1 ,(g.) 2 (g , 1 ) 2

+6U6(9)'g,,- 9bg 1,1,(gx)
3
1,1 + (gtl)2(gz)2 9.: + 6usb(g1 , )'

+6(U 4).b(g. ) 7 + gtt(g.1 , + 2bggt,..(g. ) 4 -29 ggg(g 1 ,)
3)/(g 1, )5
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US1 = -(b2(gz)4gzx - 9b2(gr) 3gzrgzzr - 17b 2 (gr) 3 g z r..rrrr

+48b0(g.)2(g,,)2g,:=z - 2bg,(gz)3g.'.. + 70b2(g.)2gr,(g=,r)
-

-14g(.)g . + 17bgg(gz)2gxzgrzz _ Sb~gtX(gz) 3 9z~z

+81b 2(g _)5 - 21bg,g(gzz)3 + 21bg,=(g.)2(g.r)2 + 61,.b(9r)6  r

-9bg tz(gz)3gxr + (g,)2 (g.) 2 g.. + 6(u 4 ) b(g1 )7 + g(U 1 J'

+2bgtzrx(g 1 )4 
- 2gt,(g.)3)/(6b(g.) )

* COEFFICIENT OF g IS 0

U6 IS ARBITRARY!

COMPATIBILITY CONDITION IS SATISFIED!

Example 2: The sine-Gordon Equation

The transcendental term in the sine-Gordon equation, in light cone coordinatcs.

ut, - sin(u) = 0, (3)

can be removed by the simple substitution f = ezp(iu) to obtain an equivalent
equation with polynomial terms:

-2ftf. + 2ff. _- f 3 + f . (1)

PAINLEVE ANALYSIS OF EQUATION, -2ff 7 + 2ff,, - f- + f = 0

SUBSTITUTE uo g~afa FOR f IN ORIGINAL EQUATION

MINIMUM POWERS OF g ARE [2alfa - 2, 3 alf a, alf a]

* COEFFICIENT OF g2 alfa-2 IS -2 u02 alfa gt g,

* COEFFICIENT OF g3 alfa IS -U0 3

* COEFFICIENT OF gatfa IS u0

FOR EXPONENTS 2 aif a - 2 AND 3 elf a OF g, DO

WITH alfa = -2, POWER OF g is 6 - SOLVE FOR uo

TERM uo2 (4gtg - uo)-L IS DOMINANT IN EQUATION.

WITH uo = 4gtg, -* FIND RESONANCES

SUBSTITUTE uo galfa + U, g,+al f FOR f IN EQUATION

8



TERM 8(gt) 2 (g.) 2 (r - 2)(r + 1) ur gr-6 IS DOMINANT

IN EQUATION.

THE ONLY NON-NEGATIVE INTEGRAL ROOT IS [r = 2]

WITH MAXIMUM RESONANCE = 2 - CHECK RESONANCES.

SUBSTITUTE POWER SERIES k~ g2uk FOR f IN EQUATION.

WITH uo = 4gtg

" COEFFICIENT OF L IS -16(gt) 2 (4gt- + ul)(g.) 2

ul = -4 g,

" COEFFICIENT OF -L IS 0

U2 IS ARBITRARY!

COMPATIBILITY CONDITION IS SATISFIED!

FOR EXPONENTS (2 alf a - 2) AND (alfa) OF g, alfa = 2 IS

NON-NEGATIVE.

FOR EXPONENTS (3 alfa) AND (alfa) OF g, alfa = 0 IS NON-NEGATIVE.

Example 3: The Fisher Equation

jFrom rigorous analysis it follows that if the initial datum is given by u(0, x) =

(z < 0), u(0, z) = 0 (z > 0), then the solution of the Fisher equation,

ut - u + U - 
_u = 0, (5)

will converge to a travelling wave of speed c = 2. Furthermore, for every speed
c > 2 there is a travelling wave with u(t,-oo) = 1,u(t, oo) = 0. In 1979, an

5t
exact closed form solution of (5) was constructed: u(t,z) = U(z - zo - 76

where

U()= l-tanh( ) (6)

with x0 any constant. The Painlev6 analysis for (5), put into a travelling frame of
reference, exactly determines this particular wave speed c = , which, indeed,
is larger than 2.

PAINLEVE ANALYSIS OF EQUATION, f, + cf= - f 2 + f = 0

SUBSTITUTE uo gatla FOR f IN ORIGINAL EQUATION.
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MINIMUM POWERS OF g ARE [2 alfa, alf a - 2]

* COEFFICIENT OF g 2 aifa IS -U0 2

* COEFFICIENT OF galfa- 2 IS uo (alfa - 1) alfa

FOR EXPONENTS (2 alfa) AND (alfa - 2) OF g, DO

WITH alfa = -2, POWER OF g is -4 - SOLVE FOR uo

TERM -(uo - 6) uo - IS DOMINANT IN EQUATION.

WITH uo = 6 - FIND RESONANCES

SJBSTITUTE uo gOlla + u, gr+alla FOR f IN EQUATION

TERM (r - 6)(r + 1) u, gr- 4 IS DOMINANT IN EQUATION.

THE ONLY NON-NEGATIVE INTEGRAL ROOT IS [r = 61
WITH MAXIMUM RESONANCE = 6 - CHECK RESONANCES.

SUBSTITUTE POWER SERIES 6 gk- uk FOR fIN EQUATION.

WITH uo = 6

* COEFFICIENT OF I IS -2 (6c+ 5u 1 )
g

6cUl = --
5

* COEFFICIENT OF -L IS 6(c2 + 50u, - 25)
92 25

U -5)(c+ 5)
U2-

50

* COEFFICIENT OF I IS 6(c 3 + 250u 3 )
0 125

C
3

250

" COEFFICIENT OF 1 IS 7c 4 + 500OU4 - 125

500

7c
4 

- 125
U4 5000

79c 5 - 1375c + 75000us* COEFFICIENT OF g IS -120
12500

c(79c 4 
- 13-5)

75000
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• COEFFICIENT OF 92 IS c2 (6c 2 - 25)(6c 2 + 25) _ 0
6250

U 6 IS ARBITRARY!

COMPATIBILITY CONDITION: -c2(6c2 - 25)(6c 2 + 25)= 0,
6250

• * CONDITION IS NOT SATISFIED .* * *

•** CHECK FOR FREE PARAMETERS OR PRESENCE OF uo * **

Example 4: The cylindrical KDV Equation

The cylindrical Korteweg-de Vries equation,

f . + f ,., + 6f f x + 6(f )2 + ft. = 0, (7)

2t

has the Painlev6 property. One easily determines the coefficient - in (7), by
analyzing a cylindrical KdV equation with arbitrary coefficient a(t) of f. Inte-
gration of the compatibility condition a(t), + 2a(t) 2 = 0, gives a(t) =

PAINLEVE ANALYSIS OF EQUATION,

a(t)f. + f... + 6ff.. + 6(f.)2 + f,. = 0

'SUBSTITUTE uo gat/a FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE [2 alfa - 2, alfa - 4]

" COEFFICIENT OF g2 alfa-2 IS 6u 0
2 alfa (2alfa - 1) (g.) 2

" COEFFICIENT OF ga0' 1 - 4 IS uo (alfa - 3)(alfa - 2)(alfa - 1) alfa (g,)4

FOR EXPONENTS (2 alfa - 2) AND (alfa -4) OF g, DO

WITH alfa = -2, POWER OF g is -6 - SOLVE FOR uo

TERM 60 uo (g)2 (2(g-)2 + uo) L IS DOMINANT

IN EQUATION.
WITH uo = -2(g_) 2 -* FIND RESONANCES

SUBSTITUTE uo g'lfa + ur gr+alfa FOR f IN EQUATION

TERM (g.) 4 (r - 6)(r - 5)(r - 4)(r + 1)urg "- 6 IS DOMINANT

IN EQUATION.
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THE 3 NON-NEGATIVE INTEGRAL ROOTS ARE

[r=4, r=5, r=6]

WITH MAXIMUM RESONANCE = 6 - CHECK RESONANCES.

SUBSTITUTE POWER SERIES 1o9-u FOR fIN EQUATION.

WITH uo = -2(g,) 2

* COEFFICIENT OF -% IS 120(g )4 (2g,= - u,)

9
ul1 = 2g.,

* COEFFICIENT OF - IS

-12(gx)-(4gzgxxx - 3(g..) 2 + 6U2(g.) 2 + g,g.)

4g= g- , - 3(grx)2 + gtg,
U2 = - 6(g.)2

* COEFFICIENT OF - IS

4((g. ) 3a(t) + (g.) 2gvz=x - 4gxgxxgzzz

+3(grx) 2 - gtgxgzz - 6u 3(g.) 4 + gt(g.) 2 )

u3 = ((g.) 3 a(t) + (g.) 2gzzrz - 4g-gxzg xr + 3(gx)2 
- ggrgxr

+g,.(g )2)/(6(g. )')

* COEFFICIENT OF -L IS 0

U4 IS ARBITRARY!

COMPATIBILITY CONDITION IS SATISFIED!

* COEFFICIENT OF ! IS 0
g

u5 IS ARBITRARY!

COMPATIBILITY CONDITION IS SATISFIED!

* COEFFICIENT OF I IS a(t), + 2a(t) 2

6

V6 IS ARBITRARY!

COMPATIBILITY CONDITION: a(t)t + 2a(t) 2 = 0.
6

*•* CONDITION IS NOT SATISFIED .* * *

*** CHECK FOR FREE PARAMETERS OR PRESENCE OF uo ***
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Example 5: The Fitzhugh-Nagumo Equation

We recently discovered that the Fitzhugh-Nagumo equation,

u, - u, - u(1 - u)(u - a) = 0, (8)

has a closed form travelling wave solution, u(t, z) =U( - ct), where(I
= + exp(-L), (9)

and c = 21. Carrying out the Painlevd test for (8), in a travelling frame, leads

to a compatibility condition which for uo = V/ factor into

S(c = (2a -. 1)) (10)

So, we see that one of the roots corresponds with the wave speed in (9).

PAINLEVE ANALYSIS OF EQUATION, f., + cf, - f 3 + (a + 1)f2 _ af = 0

SUBSTITUTE uo glf a FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE [3alfa, 2alfa, alf a - 2]

* COEFFICIENT OF g 301 fa IS -uo
3

* COEFFICIENT OF g 2alfa IS u0 2 (a+ 1)

" COEFFICIENT OF gla-2 IS u0 (alfa - 1) alfa

FOR EXPONENTS (3alfa) AND (2alfa) OF g, alfa = 0 IS NON-NEGATIVE.

FOR EXPONENTS (3alfa) AND (alfa - 2) OF g, DO

WITH alfa = -1, POWER OF g is -3 - SOLVE FOR uo

TERM -uo(uo 2 - 2)-L3 IS DOMINANT IN EQUATION.

WITH uo = 2 - FIND RESONANCES

SUBSTITUTE uo galfa + ur gr+aila FOR f IN EQUATION

TERM (r - 4)(r + 1) u,. gr-3 IS DOMINANT

IN EQUATION.

THE ONLY NON-NEGATIVE INTEGRAL ROOT IS [r = 4]

13



WITH MAXIMUM RESONANCE = 4 -~ CHECK RESONANCES.
SUBSTITUTE POWER SERIES T4=oukgk-I FOR f IN EQUATION.

WITH u0 2 = 2

" COEFFICIENT OF -L IS -(uoc - 2a + 6u, - 2)

=-uoc -2a- 2ul 6

" COEFFICIENT OF IS - UOC' - 2uoa2 + 2uoa + 36u 2 - 2u0
6

U2=- t(C
2 -2a 2 + 2a - 2)

* COEFFICIENT OF I1I3
2u0c3 - 3uoa 2 C + 3uoac - 3u0 c - 2a3 + 3a 2 + 3a + 108?13 - 2

27

2u0 c3 - 3uoa2 C + 3uoac - 3uoc - 2a 3 + 3a 2 + 3a - 2

= - 108

* COEFFICIENT OF g IS

c(2uoc 3 - 3uo 2 c + 3uoac - 3uoc - 2a 3 + 3a 2 + 3a - 2)
27

U4 IS ARBITRARY!

COMPATIBILITY CONDITION:

c(2uoc3 - 3uoa 2C + 3u 0ac - 3u 0 c - 2a3 + 3a 2 + 3a - 2)-
27 

0

**CONDITION IS NOT SATISFIED. *

**CHECK FOR FREE PARAMETERS OR PRESENCE OF u0 o
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